数控加工作为现代制造业先进生产力的代表,在机械、航空航天和模具等行业发挥着极为重要的作用。90 年代以来,欧、美、日各 竞相开发和应用新一代高速数控机床,加快了机床高速化发展步伐。高速主轴单元中电机主轴转速 15000 ~100000r/min,高速且高加/ 减速度的进给运动部件的快移速度60~120m/min,切削进给速度高达60m/min,高速加工中心进给速度可达80m/min,空运行速度可达100m/min 左右。
一、国内外加工中心切削水平的差异
目前先进国家的车削和铣削的切削速度已达到5000~8000m/min 以上;机床主轴转数在30000r/min(有的高达10 万r/min)以上。例如:在铣削平面时,国外的切削速度一般大于1000~2000m/min,而国内只相当于国外的1/12~1/15,即国内干12~15 个小时的活相当于国外干1 个小时。据调查,许多加工中心的实际切削时间不到工作时间的 55% 。因此,如何提高加工效率,降低废品率成了众多企业共同探讨的问题。对国内数控加工中心切削效率部分调查发现,普遍存在如刀具精度低、刀片跳动量大、加工光洁度低、工艺设备不配套等诸多问题。
二、提高切削效率的途径
(一) 合理选择切削用量
当前以高速切削为代表的干切削、硬切削等新的切削工艺已经显示出很多的优点和强大的生命力,成为制造技术提高加工效率和质量、降低成本的主要途径。实践证明,当切削速度提高10 倍,进给速度提高 20 倍,远远超越传统的切削“禁区”后,切削机理发生了根本的变化。其结果是:单位功率的金属切除率提高了30%~40%,切削力降低了30%,刀具的切削寿命提高了 70% ,大幅度降低了留在工件上的切削热,切削振动几乎消失;切削加工发生了本质性的飞跃。根据目前机床的情况来看,要充分发挥先进刀具的高速加工能力,需采用高速加工,增大单位时间材料被切除的体积( 材料切除率 Q) 。
在选择合理切削用量的同时,尽量选择密齿刀(在刀具每英寸直径上的刀齿数≥ 3 ),增加每齿进给量,提高生产率及刀具寿命。有关试验研究表明:当线速度为165m/min,每齿进给为0.04mm 时,进给速度为341m/min,刀具寿命为30 件。如果将切削速度提高到350m/min,每齿进给为0.18mm ,进给速度则达到2785m/min,是原来加工效率的817%,而刀具寿命增加到了117 件。
(二) 选择性能好的刀具材料
在数控机床切削加工中,金属切削刀具的作用不亚于瓦特发明的蒸气机。制造刀具的材料必须具有很高的高温硬度和耐磨性,必要的抗弯强度、冲击韧性和化学惰性,良好的工艺性( 切削加工、锻造和热处理等) ,并不易变形。目前国内外性能好的刀具材料主要有:金属陶瓷、硬质合金涂层刀具、陶瓷刀具、聚晶金刚石(PCD )和立方氮化硼(CBN )刀具等。它们各具特点,适应的工件材料和切削速度范围各不相同。CBN 适用于切削高硬度淬硬钢和硬铸铁等,如加工高硬钢件(50~67HRC)和冷硬铸铁时主要选用陶瓷刀具和 CBN刀具,其中加工硬度60~65HRC 以下的工件可用陶瓷刀具,而65HRC 以上的工件则用CBN 刀具进行切削;PCD 适用于切削不含铁的金属,及合金、塑料和玻璃钢等,加工铝合金件时, 主要采用 PCD 和金刚石膜涂层刀具;碳素工具钢和合金工具钢现在只用作锉刀、板牙和丝锥等工具;硬质合金涂层刀具(如涂层TiN 、TiC、TiCN、TiAIN 等)虽然硬度较高,适于加工的工件范围广,但其抗氧化温度一般不高,所以切削速度的提高也受到限制,一般可在400~500m/min 范围内加工钢铁件,而Al2O3 涂层的高温硬度高,在高速范围内加工时,其耐磨性较TiC、TiN 涂层都好。此外,刀具切削部分的几何 数对切削效率的高低和加工质量有很大影响,高速切削时的刀具前角一般比普通切削时小10°,后角大5°~8°。为防止刀尖处的热磨损,主、副切削刃连接处应采用修圆刀尖或倒角刀尖,以增大局部刀尖角,增大刀尖附近切削刃的 度和刀具材料体积,以提高刀具刚性和减少刀具破损率。
(三) 加快涂层技术的开发
刀具涂层技术自从问世以来,对刀具性能的改善和加工技术的进步起着非常重要的作用,涂层刀具已经成为现代刀具的标志,在刀具中所占比例已超过 50% 。在21 世纪初,涂层刀具的比例将进一步增加,有望在技术上突破 CBN 涂层技术,使CBN 的优良性能在更多的刀具和切削加工中得到应用( 包括精密复杂刀具和成形刀具), 将全面提高加工黑色金属的切削水平。此外,纳米级超薄超多层和新型涂层材料的开发应用的速度将加快,涂层将成为改善刀具性能的主要途径。
(四) 选择高精度刀片
刀片精度低,跳动量太大,面铣刀加工的平面光洁度将降低,甚至出现沟状。高精度数控机床上刀片的跳动量应控制在 2 ~5μ m 。随着数控机床的发展,相应出现刀片的表面改性涂层处理(基体为高速钢、WC o类硬质合金、Ti 基类金属陶瓷),很大程度上提高了刀片精度。与此同时,出现了各种新型可转位刀片结构,如用于车削的高效刮光刀片、形状复杂的带前角铣刀刀片、球头立铣刀刀片、防甩飞的高速铣刀刀片等。可转位刀片进入了材料、涂层、槽型综合开发的新阶段,可根据加工材料和加工工序合理组合材料、涂层、槽型的功能,开发出具有最佳加工效果的刀片,以满足高速、高寿命切削加工生产技术的不同要求。
(五) 提高加工表面质量
在保持相同的切削效率( 即相同 Q 值)下,提高切削速度可改善切屑形成过程和增加切削阻尼,抑制颤振,相应地减少每个刀齿的进给量能降低切削表面轨迹形成的残留高度,改善表面粗糙度,从而有利于精密零件和模具的加工。
(六) 建立合理的刀具储备
这里的刀具是指高切削效率刀具,而这些刀具的价格较高,相同直径的铣刀,好刀具的价格可能是普通刀具的几倍甚至十几倍。如果一个企业长期存放一大批好刀具,而这些刀具又可能长时间用不上,则造成资金积压。但如果平常一把刀具也不储备,或储备数量太少,很快就用完了,而新刀具一时又买不到,这样必然会影响数控加工的效率。绝大多数企业的加工中心的刀库均可容纳 40 把刀具以上,并有60、90、120 等不同刀数的刀库可供选择。刀具之间交换时间越来越短, 德国STEINEL 公司的BZ -26,日本MAKINO公司的MCC86,美国CINCINNATI 公司的MAXIM500 型加工中心的换刀时间只需3~4s。
(七) 设计简易的磨刀夹具
机夹铣刀盘效率高,使用方便,深受操作者欢迎,但刀片消耗量大,使用成本高,而且多数情况下刀片的损坏是由于刃口磨损造成的,因此刀片的重磨再利用对工厂来说可获得较高经济效益。硬质合金刀片的硬度高,磨削效率低,采用单片磨削将达不到节约的目的,需设计出高效简单的夹具,实现一次装夹多个刀片。
(八) 加工方式的选择
加工方式可分为顺铣与逆铣两种。而加工中心的机械传动系统和结构本身就有较高的精度和刚度,相对运动面的摩擦系数小,传动部件的间隙小,运动惯量小,并有适当的阻尼比,因此可以采用顺铣的方式加工,以提高加工效率。此外,根据加工经验,顺铣比逆铣时刀具寿命要提高 1倍多,采用不对称的立铣方法,刀具寿命可提高2~3 倍。 (9)选择合理的加工路线数控机床特别是 4 轴以上加工中心,一般是一次装夹、多方位加工,并且都有刀库,可自动更换刀具,一次加工成形。因此确定正确简洁的加工路线,是保证加工质量和提高效率的基础。编程时确定加工路线的原则主要有:应能保证零件的加工精度和表面粗糙度的要求;应尽量缩短加工路线,减少刀具空程移动时间;应使数值计算简单,程序段数量少,以减少编程工作量。如对于位置精度和尺寸公差要求高的孔加工来说,孔直径小于 18 ~20mm的加工工艺路线为:钻中心孔-钻孔-扩孔-铰孔,而对于孔直径大于 18 ~20mm的加工工艺路线则为钻孔-扩孔-粗镗孔-精镗孔。
本文由 伯特利数控文章 整理发表,文章来自网络仅参考学习,本站不承担任何法律责任。
加工中心专业制造
2024-11
本文以组合式六角亭模型为实例,分析工艺难点与加工可行性,指出该模型的加工难点是模型形状不规则和整体刚性差,并通过设计新的工艺方案解决加工难点,完成了模型整体的加工。新的加工工艺有助于提高加工效率和精度,为五轴数控加工提供了一个典型案例,对于五轴加工中心数控加工也具有指导作用和重要… [了解更多]
2024-11
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!本文摘要:通过对混联五轴加工中心自适应深度学习控制方法的 研 究,可 知 此 方 法 的 创 新 之 处 在 于:1)建 立 了 机 床 的 运 动 学 … [了解更多]
2024-11
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!本文摘要:1)本文建立了基于转角向量和双弦弓高的局部能量光顺算法,该方法以刀心点光顺前后最大许用偏移量作为约束,通过计算拐角处微小线段局部能量最优解,可使… [了解更多]
2024-11
在机测量技术由于其成本低、检测效率高、无需二次装夹等优势被广泛用于零件加工测量当中,使得五轴加工中心和五轴钻攻中心,同时又兼具测量功能。在机测量系统的构成如图1所示,硬件部分主要是由高精度探头、信号接收器、机床整个本体,软件部分由机床控制系统、测量软件等组成[8]。待零件加工完成… [了解更多]