航天数控系统的工件坐标系建立是通过G92 Xa zb (类似于FANUC 的G50)语句设定刀具当前所在位置的坐标值来确定。加工前需要先对刀,对到实现对的是基准刀,对刀后将显示坐标清零,对其他刀时将显示的坐标值写入相应刀补参数。然后测量出对刀直径Фd,将刀移动到坐标显示X=a-d Z=b 的位置,就可以运行程序了(此种方法的编程坐标系原点在工件右端面中心)。在加工过程中按复位或急停健,可以再回到设定的G92 起点继续加工。但如果出意外如:X或Z轴无伺服、跟踪出错、断电等情况发生,系统只能重启,重其后设定的工件坐标系将消失,需要重新对刀。如果是批量生产,加工完一件后回G92起点继续加工下一件,在操作过程中稍有失误,就可能修改工件坐标系,需重新对刀。鉴于这种情况,我们就想办法将工件坐标系固定在机床上。我们发现机床的刀补值有16个,可以利用,于是我们试验了几种方法。
第一种方法:在对基准刀时,将显示的参考点偏差值写入9号刀补,将对刀直径的反数写入8号刀补的X值。系统重启后,将刀具移动到参考点,通过运行一个程序来使刀具回到工件G92 起点,程序如下:
N001 G92 X0 Z0;
N002 G00 T19;
N003 G92 X0 Z0;
N004 G00 X100 Z100;
N005 G00 T18;
N006 G92 X100 Z100;
N007 M30;
程序运行到第四句还正常, 运行第五句时,刀具应该向X 的负向移动,但却异常的向X、Z的正向移动,结果失败。分析原因怀疑是同一程序调一个刀位的两个刀补所至。
第二种方法:在对基准刀时,将显示的与参考点偏差的Z 值写入9 号刀补的Z 值,将显示的X值与对刀直径的反数之和写入9好刀补的X 值。系统重启后,将刀具移至参考点,运行如下程序:
N001 G92 X0 Z0;
N002 G00 T19;
N003 G00 X100 Z100;
N004 M30;
程序运行后成功的将刀具移至工件G92起点。但在运行工件程序时,刀具应先向X、Z的负向移动,却又异常的向X、Z的正向移动,结果又失败。分析原因怀疑是系统运行完一个程序后,运行的刀补还在内存当中,没有清空,运行下一个程序时它先要作消除刀补的移动。
第三种方法:用第二种方法的程序将刀具移至工件G92 起点后,重启系统,不会参考点直接加工,试验后能够加工。但这不符合机床操作规程,结论是能行但不可行。
第四种方法:在对刀时,将显示的与参考点偏差值个加上100后写入其对应刀补,每一把刀都如此,这样每一把刀的刀补就都是相对于参考点的,加工程序的G92 起点设为X100Z100,试验后可行。这种方法的缺点是每一次加工的起点都是参考点,刀具移动距离较长,但由于这是G00 快速移动,还可以接受。
第五种方法:在对基准刀时将显示的与参考点偏差及对刀直径都记录下来,系统一旦重启,可以手动的将刀具移动到G92 起点位置。这种方法麻烦一些,但还可行。
3 结语
数控机床的工件坐标系确定是影响加工精度的一大因素,对于不同型号的机床又有不同的要求,只有准确掌握、灵活运用这些知识,才能操作好数控机床。
本文由 伯特利数控文章 整理发表,文章来自网络仅参考学习,本站不承担任何法律责任。
2024-11
结 合 车铣复合加工中心说明书,应 用UG软 件PostBuilder开发 了XZC类 机 床 后 置 处 理,能 够 快 捷 实 现UG自动 编 程 中 车、铣、孔等操作的程序后处理,文 中 对 后处 理 创 建 从 初 始 化 运 动、运 动 前 设 置、机 床 运 动 前、… [了解更多]
2024-11
本文通过对五轴加工中心的三种类型的结构特点进行具体的运动分析,建立了数学模型推导出各类机床的后置处理算法。并通过UG NX进行建模并进行后处理与算法得到的后处理数据进行对比,证明了文中算法的正确性。通过所推导的数学公式得知,坐标的角度变换与转台的转动相关。所推导的数学模型为最基础… [了解更多]
2024-11
为了提高五轴加工中心的刀具加工精度,本文提出了五轴联动数控刀具切削加工误差非线性插补方法。根据五轴联动数控刀具工作原理,分析误差产生原因,利用误差非线性插补方法,实现误差插补。实验结果表明:利用该方法进行误差插补后,机床刀具运行轨迹与理想插补轨迹贴合度高,且插补后误差明显减小,可… [了解更多]
2024-11
随着五轴联动数控加工技术的广泛应用,文中针对五轴加工中心和五轴钻攻中心的后置处理器进行仿真分析,并提出一种以序列为基础的优化方法,优化后的后置处理器,可以使得数控加工节省时间百分比得到有效提升。虽然文中提出优化方法满足了预期要求,但受到研究条件的影响,该方法未来需要进一步完善。… [了解更多]
2024-11
面向铣削工艺参数优选技术的工程需求,以复杂零部件多轴数控铣削为背景,文中提出了一种通用立铣刀真实切削轨迹下的五轴铣削力计算方法。 (1)建立了可同时表征球头铣刀、圆环铣刀和平底铣刀的通用立铣刀几何模型,计算得到不同类型立铣刀的切削微元长度和切削宽度。 (2)提出了一种快速求解… [了解更多]