2 三轴数控铣削加工仿真系统的主要功能模块
2 . 1 数据预处理
此模块主要用来实现 NC文件的数据读入。 数控加工刀轨仿真的关键就是从 NC文件中读取三轴联动加工信息。这些加工信息主要包括 G功能代码和尺寸字。本文根据三轴联动的实际特性 ,只对以下三组常用代码作相应的处理: G00~G O2; G17~G19; G90, G91。系统在读入 NC文件之后 ,需将NC文件数据转化为仿真所需的坐标点 ,并存储到链表中[ 1 ]。链表结构如下:

根据坐标值前的 G代码不同作出相应的处理:若为直线加工指令 (GO1) ,直接将端点坐标值添加到链表当中;若为圆弧加工指令 (GO2, GO3) ,则以进给量当 (即插补步长 ) f为步长,用直线插补来近似圆弧,并将所有直线段的端点坐标值添加到链表当中。


2 . 2 仿真计算
刀轨仿真只是动态显示机床走刀路径,并没有考虑实际刀轨与设计理想模型间的比较关系,尤其是刀具在加工过程中刀具对工件的干涉无法反映出来,从而不能对加工过程的干涉作出一个定量的评判。 本文通过计算刀位点到工件表面的最短距离,并比较其与刀具半径的大小关系,从中就可以容易判断刀具与工件之间是否发生干涉。
采用目前在 RP技术中广泛应用的 ST L模型来作为设计理想模型的替代。精度是影响 ST L模型准确性的一项重要指标 ,必须根据零件加工的需要设定合理的精度 ,理论上 ST L模型精度ε1和数控加工精度ε2必须严格要求保证满足:ε1 <ε2 ,而在实际加工中一般要求ε1比ε2高出一个数量级,否则检测结果将无实际意义[2 ]。
在 ST L文件中所有三角面片被无序列出 ,相互之间不存在任何拓扑信息 , 这将导致刀位点到模型的最短距离计算过程相当困难。 因此 ,重建零件 ST L模型的拓扑信息是非常必要的。 在读入零件的 ST L模型数据时,依据三角面片的 Z方向的极大值进行排序,从大到小依次保存到链表当中。 同时,为了简化后续数据计算过程,在链表中设计了两个数组用来保存三角面片在 XY投影面上的四个极值。 链表结构定义如下:

当三轴数控铣床使用球头铣刀加工曲面时,加工对象轮廓上的所有点到刀具轴线的距离不小于刀具半径R,是不发生干涉的充要条件。 考虑到三轴数控铣床加工特点,刀具在加工过程中可能发生最典型的干涉有:(1) 全干涉,即刀具碰撞曲面; (2) 局部干涉,即导致工件材料被过切。对于第一种干涉情形: 由于加工曲面已被三角化的 ST L模型替代,因此,只有 Zmax不小于刀位点坐标 ( x, y, z) 的 z值的三角面片才是可能会发生全干涉的区域。 三角面片和刀具在 XY投影平面的形状分别为三角形和圆,如图 3所示。 通过比较圆心 O到三角形 △ABC的最短距离 r和刀具半径 R大小,就可以判断此类干涉是否发生。
当圆心位于三角形△ABC内时,刀具圆心到三角形 △ABC的最短距离 r为零,小于刀具半径R,故一定发生全干涉。当圆心位于三角形△ABC外时,假设圆心 O到三角形 △ABC的顶点的距离分别为 d1 , d2 , d3 , 且 d1 ≤d2 ≤d3。 过圆心 O作与 d1 ,d2相对应的顶点所组成边的垂线,垂足为 D,当点 D位于线段AB之间时,易知 OD 就是圆心 O到三角形 △ABC的最短距离 r ,而当点 D位于线段 AB的延长线上时,可以推出,圆心 O与 d1所对应的顶点 A距离就是圆心 O到三角形 △ABC的最短距离 r。 因此,只要 r小于刀具半径 R,就会发生全干涉。

对于第二种干涉情形: 由于球头铣刀底部类似于一个半球体,因此,工件被过切 (局部干涉 )的区域将介于平面 Z = z和平面 Z = z - R之间,因此,只有 Zmax不小于 z - R值,且 Zmin不大于 z值的三角面片才是可能发生此类干涉的区域。 刀具与工件发生局部干涉的充要条件仍然是球心 0到三角面片的最短距离 r小于刀具半径 R。 假设过球心 O直接作三角面片的垂线,垂足为 E,此时,分两种情形讨论垂足点 E与三角面片 △ABC的位置关系:
当垂点 E位于三角面片 △ABC内时,如图 4所示,易知球心 O到垂点 E的距离即为球心 O到三角面片 △ABC的最短距离 r ,即 OE ,然后判断刀具半径 R与 r的关系,若 r小于 R,则工件被过切。
当垂点 E坐落三角面片 △ABC外时,如图 5所示,假设三角面片 △ABC的三个极点到球心 O的间隔分别为 d1 , d2 , d3 ,且 d1 ≤d2 ≤d3。 过点 O作与 d1 , d2相对应的极点所构成边的垂线,垂足为 D。 当点 D坐落线段 AB之间时, 易知 OD 即是球心 O到三角面片 △ABC的最短间隔 r , 而当点 D坐落线段AB的延伸线上时,能够推出,圆心 O与 d1所对应的极点 A间隔即是圆心 O到三角面片 △ABC的最短间隔 r。 因而,只需 r小于刀具半径 R,就会发作干与。图 4 垂点 E在三角面片内图 5 垂点 E在三角面片外当三轴数控铣床运用一般立铣刀加工时,因为一般立铣刀 (R1 = 0)是数控加工刀具中最为简略的一种,因而,其干与判断也最为简略。 如图2所示,关于恣意刀位点o ( x, y, z) ,设对应的刀具切触点 P ( xp , yp , zp )。 只需 Zmax 大 于 切 触 点P ( xp , yp , zp )的 zP值的三角面片的才可能是发作干与的区域,刀具和三角面片在 XY平面的投影区域为一个圆和三角形,如图 3所示,核算满意 Zmax大于 zP的三角面片到圆心的最短间隔 r ,并与刀具半径 R比较,只需 r小于 R,即断定发作干与。 详细检测进程类似于用球头铣刀加工的第一种干与景象。
2 . 3 仿真成果显现
因为三维动态仿真需求较快的显现速度 ,并且数控加工的刀位点数据量相当大 ,直接导致 OpenG L体系的核算量也非常大 ,因而本体系经过选用双缓存技能来增强了数控加工进程动画显现的连续性和运动感 ,以及显现列表技能将诸如ST L模型等目标预存到内存中 ,以削减模型制作的工作量[ 3 ]。
在仿真成果显现中 ,用户能够对工件进行旋转 ,缩放 ,平移和暂停等操作。一起 ,将发作干与的刀具轨道及其关联的三角面片以不一样色彩显现出来 ,并向用户供给精确的干与区域的坐标值数据。
2024-11
本文以组合式六角亭模型为实例,分析工艺难点与加工可行性,指出该模型的加工难点是模型形状不规则和整体刚性差,并通过设计新的工艺方案解决加工难点,完成了模型整体的加工。新的加工工艺有助于提高加工效率和精度,为五轴数控加工提供了一个典型案例,对于五轴加工中心数控加工也具有指导作用和重要… [了解更多]
2024-11
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!本文摘要:通过对混联五轴加工中心自适应深度学习控制方法的 研 究,可 知 此 方 法 的 创 新 之 处 在 于:1)建 立 了 机 床 的 运 动 学 … [了解更多]
2024-11
宇匠数控 备注:为保证文章的完整度,本文核心内容由PDF格式显示,如未有显示请刷新或转换浏览器尝试,手机浏览可能无法正常使用!本文摘要:1)本文建立了基于转角向量和双弦弓高的局部能量光顺算法,该方法以刀心点光顺前后最大许用偏移量作为约束,通过计算拐角处微小线段局部能量最优解,可使… [了解更多]
2024-11
在机测量技术由于其成本低、检测效率高、无需二次装夹等优势被广泛用于零件加工测量当中,使得五轴加工中心和五轴钻攻中心,同时又兼具测量功能。在机测量系统的构成如图1所示,硬件部分主要是由高精度探头、信号接收器、机床整个本体,软件部分由机床控制系统、测量软件等组成[8]。待零件加工完成… [了解更多]