数据预处理
由于采集到信号可能含有各种噪声和干扰信号 比如突变和尖峰信号 所以在对信号进一步分析之前 必须对监测得到的信号进行降噪[1]等预处理 提取有效信号 图 1 是数控机床主轴振动信号预处理后的主轴振动信号

相空间重构
相空间重构[2]是混沌时间序列判定和预测的基础 作为分析时间序列混沌特性的一种重要方法 它通过单一的系统输出时间序列来构造一组表征原系统动力学特性的坐标分量 从而近似地恢复系统的混沌吸引子 在数值计算过程中 首先必须根据获得的单变量时间序列计算相空间重构的时间延迟和嵌入维数 并进行相空间重构 即通过单一系统输出时间序列来构造一组表征原系统动力学特性的坐标分量 从而近似恢复系统的混沌吸引子 相空间重构建立了时间序列波动和动力系统空间特征之间的桥梁 根据Takes等提出的相空间重构
理论 将传感器采集到的 3000 个正常工况下数控机床主轴振动数据记为一个单变量时间序列 X1,X2,…X3000将其嵌入到m维相空间 时间延迟为T为了重构一个合适的相空间 必须选取恰当的时间延迟T和嵌入维数m采用互信息法和 Cao 法进行时间延迟T和嵌入维数m的计算
2.1 用互信息法求时间延迟
互信息法[3]是估计重构相空间延迟时间的一种有效方法 取互信息函数的第一个极小值点为延迟时间T计算求得互信息时间函数如图 2 所示 从图中可看出 互信息第一次取极小值的时间为 4 所以T=4 为数控机床主轴相空间重构的时间延迟

2.2 Cao 法估计嵌入维数m
Cao 方法[4]即改进的虚假邻近点法 通过 Cao 方法可以画出E1 (m )和E2(m)随嵌入维数增加的曲线图如图 3 所示

从图 3 可以看出E2 (m)不是恒为 1 所以该序列不是随机序列当m>4 时E1 (m)逐渐停止变化或变化很小 所以取相空间嵌入维数去m=5
数控机床主轴振动数据最大Lyapunov指数估计
由计算出的时间延迟T=4 和嵌入维数m=5 由Takes定理对数控机床主轴正常工况下振动时间序列进行相空间重构后 即可采用小数据量法[5]对其最大 Lyapunov 指数进行计算 计算得到最大 Lyapunov 指数值为 0.2111 说明主轴振动信号具有混沌特性 数控机床是个混沌系统
结论
通过对数控机床主轴的振动信号进行向空间重构选取恰当的时间延迟 和嵌入维数m计算得到振动信号的最大Lyapunov 指数大于 0 验证了数控机床运行状态的混沌特性 这为后续应用混沌理论对对数控机床进行状态监测和趋势预测奠定了基础具有较强的使用价值
2018-07
FANUC 0 系统 序号 故障征兆 故障原因 解决办法 1 当选完刀号后,X、Y轴移动的同时,机床也进行换刀的动作,但是,X、Y轴移动的距离,与X、Y轴的移动指令不相吻合,并且每次的实际移动距离与移动指令之差还不一样 没有任何报警,应属于参数问题。 1.修改参数0009号TMF… [了解更多]
2016-02
数控机床及加工中心可靠性研究概况 1.2.1国内外可靠性研究概况 在第二次世界大战中,德国为了确保V-II型火箭能够在长途飞行后成功攻击到目 标,首先提出了可靠性的一些基本思想和概念。同时,美国在与日本进行太平洋战争时, 多达两万架的飞机在飞行途中就因为发生故障而损失掉了。其中5… [了解更多]